Conditional Probability and Cards

- A standard deck of cards has:
- 52 Cards in 13 values and 4 suits
- Suits are Spades, Clubs, Diamonds and Hearts

- Each suit has 13 card values: 2-10, 3 "face cards" Jack, Queen, King (J, Q, K) and and Ace (A)

Basic Card Probabilities

- If you draw a card at random, what is the probability you get:
- A Spade? P(Spade)=13/52
- A Face card? P(Face Card)=12/52 (or simply 3/13)
- A Red Ace? P(Red Ace) $=2 / 52$

Multiple Draws without Replacement

- If you draw 3 cards from a deck one at a time what is the probability:
- All 3 cards are Red?
- $P\left(1^{\text {st }}\right.$ is red $\cap 2^{\text {nd }}$ is red $\cap 3^{\text {rd }}$ is red $)$
$=P\left(1^{\text {st }}\right.$ is red $){ }^{*} \mathrm{P}\left(2^{\text {nd }} \text { is red }\right)^{*} \mathrm{P}\left(3^{\text {rd }}\right.$ is red $)$ by independence
$=(26 / 52) *(25 / 51) *(24 / 50)=.1176$
- You don't draw any Spades?
- $P\left(1^{\text {st }}\right.$ isn't Spade $\cap 2^{\text {nd }}$ isn't Spade $\cap 3^{\text {rd }}$ isn't Spade $)$ $=\mathrm{P}\left(1^{\text {st }} \text { isn't Spade }\right)^{*} \mathrm{P}\left(2^{\text {nd }} \text { isn't Spade }\right)^{*} \mathrm{P}\left(3^{\text {rd }}\right.$ isn't Spade $)$ $=(39 / 52)$ * $(38 / 51)$ * $(37 / 50)=.4135$

Multiple Draws without Replacement

- If you draw 3 cards from a deck one at a time what is the probability:
- You draw a Club, a Heart and a Diamond (in that order)
- $P\left(1^{\text {st }}\right.$ is Club $\cap 2^{\text {nd }}$ is Heart $\cap 3^{\text {rd }}$ is Diamond $)$
$=\mathrm{P}\left(1^{\text {st }} \text { is Club }\right)^{*} \mathrm{P}\left(2^{\text {nd }} \text { is Heart }\right)^{*} \mathrm{P}\left(3^{\text {rd }}\right.$ is Diamond $)$
$=(13 / 52) *(13 / 51) *(13 / 50)=.0166$
- In any order?
- There are 6 possible orders (CHD, CDH, DCH, DHC, HCD, HDC) and each is equally likely, so we can multiply .0166 by 6 to get .0996

Independence and Cards

- Are the events "Drawing an Ace" and "Drawing a Red Card" independent?
- If $\mathrm{P}($ Red Ace $)=P(\text { Red })^{*} \mathrm{P}($ Ace $)$ then yes. Check:
- $P($ Red Ace $)=2 / 52=1 / 26$
- $P($ Red $) * P($ Ace $)=(1 / 2) *(1 / 13)=1 / 26$
- Yes, they are independent!

