Conditional Probability and Cards

- A standard deck of cards has:
 - 52 Cards in 13 values and 4 suits
 - Suits are Spades, Clubs, Diamonds and Hearts
 - Each suit has 13 card values: 2-10, 3 "face cards" Jack, Queen, King (J, Q, K) and and Ace (A)

Basic Card Probabilities

- If you draw a card at random, what is the probability you get:
 - A Spade? P(Spade)=13/52
 - A Face card? P(Face Card)=12/52 (or simply 3/13)
 - A Red Ace? P(Red Ace) = 2/52

Multiple Draws without Replacement

- If you draw 3 cards from a deck one at a time what is the probability:
 - All 3 cards are Red?
 - P(1st is red ∩ 2nd is red ∩ 3rd is red)
 = P(1st is red)*P(2nd is red)*P(3rd is red) by independence
 = (26/52) * (25/51) * (24/50) = .1176
 - You don't draw any Spades?
 - P(1st isn't Spade ∩ 2nd isn't Spade ∩ 3rd isn't Spade)
 =P(1st isn't Spade)*P(2nd isn't Spade)*P(3rd isn't Spade)
 =(39/52) * (38/51) * (37/50) = .4135

Multiple Draws without Replacement

- If you draw 3 cards from a deck one at a time what is the probability:
 - You draw a Club, a Heart and a Diamond (in that order)
 - $P(1^{st} \text{ is Club} \cap 2^{nd} \text{ is Heart} \cap 3^{rd} \text{ is Diamond})$ = $P(1^{st} \text{ is Club})^*P(2^{nd} \text{ is Heart})^*P(3^{rd} \text{ is Diamond})$ = $(13/52)^* (13/51)^* (13/50) = .0166$
 - In any order?
 - There are 6 possible orders (CHD, CDH, DCH, DHC, HCD, HDC) and each is equally likely, so we can multiply .0166 by 6 to get .0996

Independence and Cards

- Are the events "Drawing an Ace" and "Drawing a Red Card" independent?
 - If P(Red Ace)=P(Red)*P(Ace) then yes. Check:
 - P(Red Ace) = 2/52 = 1/26
 - P(Red)*P(Ace)=(1/2) * (1/13) = 1/26
 - Yes, they are independent!